A Novel Function of Noc2 in Agonist-Induced Intracellular Ca2+ Increase during Zymogen-Granule Exocytosis in Pancreatic Acinar Cells
نویسندگان
چکیده
Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca(2+)-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 µM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca(2+)](i)-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca(2+)](i) increases.
منابع مشابه
Micromolar and submicromolar Ca2+ spikes regulating distinct cellular functions in pancreatic acinar cells.
Agonists induce Ca2+ spikes, waves and oscillations initiating at a trigger zone in exocrine acinar cells via Ca2+ release from intracellular Ca2+ stores. Using a low affinity ratiometric Ca2+ indicator dye, benzothiazole coumarin (BTC), we found that high concentrations of agonists transiently increased Ca2+ concentrations to the micromolar range (>10 microM) in the trigger zone. Comparison wi...
متن کاملEvidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells.
A key event leading to exocytosis of pancreatic acinar cell zymogen granules is the inositol 1,4,5-trisphosphate (InsP3)-mediated release of Ca2+ from intracellular stores. Studies using digital imaging microscopy and laser-scanning confocal microscopy have indicated that the initial release of Ca2+ is localized to the apical region of the acinar cell, an area of the cell dominated by secretory...
متن کاملRedistribution of a rab3-like GTP-binding protein from secretory granules to the Golgi complex in pancreatic acinar cells during regulated exocytosis
Regulated secretion from pancreatic acinar cells occurs by exocytosis of zymogen granules (ZG) at the apical plasmalemma. ZGs originate from the TGN and undergo prolonged maturation and condensation. After exocytosis, the zymogen granule membrane (ZGM) is retrieved from the plasma membrane and ultimately reaches the TGN. In this study, we analyzed the fate of a low M(r) GTP-binding protein duri...
متن کاملSpatiotemporal analysis of exocytosis in mouse parotid acinar cells.
Exocrine cells of the digestive system are specialized to secrete protein and fluid in response to neuronal and/or hormonal input. Although morphologically similar, parotid and pancreatic acinar cells exhibit important functional divergence in Ca(2+) signaling properties. To address whether there are fundamental differences in exocytotic release of digestive enzyme from exocrine cells of saliva...
متن کاملStabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini.
Reorganization of F-actin in the apical region of mouse pancreatic acinar cells during Ca(2+)-dependent exocytosis of zymogen granules was investigated by two-photon excitation microscopy with intact acini. Granules were rapidly coated with F-actin in response to either agonist stimulation or photolysis of a caged-Ca(2+) compound. Such F-actin coating occurred exclusively at the surface of gran...
متن کامل